Design of a novel DNA Gyrase B inhibitor with a rhodanine scaffold: in silico and in vitro approaches

Author:

Pudipeddi AkhilaORCID,Vasudevan SahanaORCID,Shanmugam KarthiORCID,Stanley AlexORCID,Pothiappan VairaprakashORCID,Neelakantan PrasannaORCID,Solomon Adline PrincyORCID

Abstract

AbstractMethicillin-resistant Staphylococcus aureus (MRSA) and vancomycin intermediate-resistant Staphylococcus aureus (VRSA) is one among the WHO high priority pathogens. Among these two, MRSA is the most globally documented pathogen that necessitates the pressing demand for new classes of anti-MRSA drugs. Bacterial gyrase targeted therapeutics are unique strategies to overcome cross-resistance as they are present only in bacteria and absent in higher eukaryotes. The GyrB subunit is essential for the catalytic functions of the bacterial enzyme DNA Gyrase, thereby constituting a promising druggable target. The current study performed a structure-based virtual screening to designing GyrB target-specific candidate molecules. The de novo ligand design of novel hit molecules was performed using a rhodanine scaffold. Through a systematic in silico screening process, the hit molecules were screened for their synthetic accessibility, drug likeliness and pharmacokinetics properties in addition to its target specific interactions. Of the total 374 hit molecules obtained through de novo ligand design, qsl-304 emerged as the most promising ligand. qsl-304 was synthesized through a one-step chemical synthesis procedure, and the in vitro activity was proven, with an IC50 of 31.23 μg/mL against the novobiocin resistant clinical isolate of Staphylococcus aureus sa-P2003. Further studies on time-kill kinetics showed the bacteriostatic nature with the diminished recurrence of resistance.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3