Secreted reporter assay enables quantitative and longitudinal monitoring of neuronal activity

Author:

Santos Ana C.,Park Sungjin

Abstract

AbstractThe ability to measure changes in neuronal activity in a quantifiable and precise manner is of fundamental importance to understand neuron development and function. Repeated monitoring of neuronal activity of the same population of neurons over several days is challenging and, typically, low-throughput. Here, we describe a new biochemical reporter assay that allows for repeated measurements of neuronal activity in a cell type-specific manner. We coupled activity-dependent elements from the Arc/Arg3.1 gene with a secreted reporter, Gaussia luciferase, to quantify neuronal activity without sacrificing the neurons. The reporter predominantly senses calcium and NMDA receptor-dependent activity. By repeatedly measuring the accumulation of the reporter in cell media, we can profile the developmental dynamics of neuronal activity in cultured neurons from male and female mice. The assay also allows for longitudinal analysis of pharmacological treatments, thus distinguishing acute from delayed responses. Moreover, conditional expression of the reporter allows for monitoring cell type-specific changes. This simple, quantitative, cost-effective, automatable, and cell type-specific activity reporter is a valuable tool to study the development of neuronal activity in normal and disease-model conditions, and to identify small molecules or protein factors that selectively modulate the activity of a specific population of neurons.SignificanceNeurological and neurodevelopmental disorders are prevalent worldwide. Despite significant advances in our understanding of synapse formation and function, developing effective therapeutics remains challenging, in part due to the lack of simple and robust high-throughput screening assays of neuronal activity. Here, we describe a simple biochemical assay that allows for repeated measurements of neuronal activity in a cell type-specific manner. Thus filling the need for assays amenable to longitudinal studies, such as those related to neural development. Other advantages include its simple and quantitative nature, logitudinal profiling, cell type-specificity, and being multiplexed with other invasive techniques.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Abdelfattah AS et al. (2019) Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science.

2. SnapShot: Genetics of Autism

3. Cell Biology of Astrocyte-Synapse Interactions

4. The role of neuronal activity and transmitter release on synapse formation

5. Gliotransmitters Travel in Time and Space

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3