Abstract
AbstractDeep Vein Thrombosis (DVT) is a blood clot most found in the leg, which can lead to fatal pulmonary embolism (PE). Compression ultrasound of the legs is the diagnostic gold standard, leading to a definitive diagnosis. However, many patients with possible symptoms are not found to have a DVT, resulting in long referral waiting times for patients and a large clinical burden for specialists. Thus, diagnosis at the point of care by non-specialists is desired.We collect images in a pre-clinical study and investigate a deep learning approach for the automatic interpretation of compression ultrasound images. Our method provides guidance for free-hand ultrasound and aids non-specialists in detecting DVT.We train a deep learning algorithm on ultrasound videos from 246 healthy volunteers and evaluate on a sample size of 51 prospectively enrolled patients from an NHS DVT diagnostic clinic. 32 DVT-positive patients and 19 DVT-negative patients were included. Algorithmic DVT diagnosis results in a sensitivity of 93.8% and a specificity of 84.2%, a positive predictive value of 90.9%, and a negative predictive value of 88.9% compared to the clinical gold standard.To assess the potential benefits of this technology in healthcare we evaluate the entire clinical DVT decision algorithm and provide cost analysis when integrating our approach into a diagnostic pathway for DVT. Our approach is estimated to be cost effective at up to $150 per software examination, assuming a willingness to pay $26 000/QALY.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献