Dysregulated functional and metabolic response in multiple sclerosis patient macrophages correlate with a more inflammatory state, reminiscent of trained immunity

Author:

Fransson J.,Bachelin C.,Deknuydt F.,Ichou F.,Guillot-Noël L.,Ponnaiah M.,Gloaguen A.,Maillart E.,Stankoff B.,Tenenhaus A.,Mochel F.,Fontaine B.,Louapre C.,Zujovic V.

Abstract

AbstractIn multiple sclerosis (MS), immune cells invade the central nervous system and destroy myelin. Macrophages contribute to demyelination and myelin repair, and their role in each process depends on their ability to acquire specific phenotypes in response to external signals. Here, we assess whether defects in MS patient macrophage responses may lead to increased inflammation or lack of neuro-regenerative effects.To test this hypothesis, CD14+CD16- monocytes from MS patients and healthy controls were activated in vitro to obtain homeostatic-like, pro-inflammatory and pro-regenerative macrophages. Myelin phagocytic capacity and surface molecule expression of CD14, CD16 and HLA-DR were evaluated with flow cytometry. In parallel, macrophages were assessed through RNA sequencing and metabolomics.We observed that MS patient monocytes ex vivo recapitulate their preferential activation toward a CD16+ phenotype, a subset of pro-inflammatory cells present in MS lesions. Even in the absence of pro-inflammatory stimuli, MS patient macrophages exhibit a pro-inflammatory transcriptomic profile with higher levels of cytokine/chemokine suggesting increased recruitment capacities. Interestingly, MS patient macrophages exhibit a specific metabolic signature with a mitochondrial energy metabolism blockage resulting in a shift from oxidative phosphorylation to glycolysis. Furthermore, we observe a failure to up-regulate apoptosis effector genes in the pro inflammatory state suggesting a longer-lived pro-inflammatory macrophage population.Our results highlight an intrinsic defect of MS patient macrophages that provide evidence of innate immune cell memory in MS.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3