Loss of Cysteine Rich domain was critical for evolution of heterodimerization in Toll proteins

Author:

Ranga Poonam,Sawanth Suresh Kumar,Mrinal Nirotpal

Abstract

AbstractToll proteins play roles in immunity/development which have largely remained conserved. However, there are differences in Toll biology as mammalian TLRs recognise pathogen associated molecular patterns (PAMPs) but not their invertebrate homologues. The reason for the same is not known. One critical molecular difference is absence of Cysteine Rich Domain (CRD) in vertebrate Tolls and their presence in invertebrates. Interestingly, in Drosophila, all Toll proteins have CRD except Toll9. This provided us the appropriate model to investigate significance of loss of CRD in Toll evolution. CRDs nudge protein dimerization by forming disulphide bonds hence we asked if they did same in Drosophila Toll-proteins. We tested if, Toll-1(which forms homodimer) can heterodimerize with Toll-9. We found that wildtype Toll-1 didn’t interact with Toll9 however; when CRD of Toll1 was deleted/mutated it formed heterodimer with Toll9. This indicates that presence of CRD limits Toll proteins to form homodimer and thus its loss was a critical event which pushed Toll proteins towards heterodimerization. We further show that Drosophila Toll9 can directly bind dsRNA, a PAMP. Interestingly, dsRNA affinity for toll-9 monomer was twice as that for the dimer, which can be attributed to CRD loss. Thus, we show that loss of CRD was a major step in Toll evolution as it resulted in functional diversity and was a first step towards heterodimer formation. Therefore, we propose that CRD loss was under positive selection and also that heterodimerization of Toll-proteins is an evolved property.One line summaryLoss of Cysteine Rich Domain in Drosophila Toll9 and recognition of dsRNA.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3