Predicting Stroke and Mortality in Mitral Regurgitation: A Gradient Boosting Approach

Author:

Zhou Jiandong,Lee Sharen,Liu Yingzhi,Liu Tong,Tse Gary,Zhang QingpengORCID

Abstract

AbstractIntroductionWe hypothesized that an interpretable gradient boosting machine (GBM) model considering comorbidities, P-wave and echocardiographic measurements, can better predict mortality and cerebrovascular events in mitral regurgitation (MR).MethodsPatients from a tertiary center were analyzed. The GBM model was used as an interpretable statistical approach to identify the leading indicators of high-risk patients with either outcome of CVAs and all-cause mortality.ResultsA total of 706 patients were included. GBM analysis showed that age, systolic blood pressure, diastolic blood pressure, plasma albumin levels, mean P-wave duration (PWD), MR regurgitant volume, left ventricular ejection fraction (LVEF), left atrial dimension at end-systole (LADs), velocity-time integral (VTI) and effective regurgitant orifice were significant predictors of TIA/stroke. Age, sodium, urea and albumin levels, platelet count, mean PWD, LVEF, LADs, left ventricular dimension at end systole (LVDs) and VTI were significant predictors of all-cause mortality. The GBM demonstrates the best predictive performance in terms of precision, sensitivity c-statistic and F1-score compared to logistic regression, decision tree, random forest, support vector machine, and artificial neural networks.ConclusionGradient boosting model incorporating clinical data from different investigative modalities significantly improves risk prediction performance and identify key indicators for outcome prediction in MR.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3