Oxidative stress alters transcript localization of disease-causing genes in the retinal pigment epithelium

Author:

Kaczynski Tadeusz J.ORCID,Au Elizabeth D.,Farkas Michael H.

Abstract

AbstractNuclear retention is a mechanism whereby RNA transcripts are held in the nucleus to maintain a proper nuclear-to-cytoplasmic balance or as a stockpile for use in responding to stimuli. Many mechanisms are employed to determine whether transcripts are retained or exported to the cytoplasm, though the extent to which tissue- or cell-type, stressors, or disease pathogenesis affect this process remains unclear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis, or progression, of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes, as well as externally from environmental insult. To evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), we performed poly-A RNA sequencing on nuclear and cytoplasmic fractions from induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide, as well as untreated controls. Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies of other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts is altered following oxidative stress, as is the retention of genes associated with AMD, IRDs, and those important for RPE physiology. These results provide a retention catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to hydrogen peroxide, offering insight into one of the potential roles oxidative stress plays in the progression of visual disorders.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3