Modeling the potential impact of indirect transmission on COVID-19 epidemic

Author:

David JummyORCID,Iyaniwura Sarafa A.ORCID,Yuan PeiORCID,Tan Yi,Kong JudeORCID,Zhu HuaipingORCID

Abstract

AbstractThe spread of SARS-CoV-2 through direct transmission (person-to-person) has been the focus of most studies on the dynamics of COVID-19. The efficacy of social distancing and mask usage at reducing the risk of direct transmission of COVID-19 has been studied by many researchers. Little or no attention is given to indirect transmission of the virus through shared items, commonly touch surfaces and door handles. The impact of the persistence of SARS-CoV-2 on hard surfaces and in the environment, on the dynamics of COVID-19 remain largely unknown. Also, the current increase in the number of cases despite the strict non-pharmaceutical interventions suggests a need to study the indirect transmission of COVID-19 while incorporating testing of infected individuals as a preventive measure. Assessing the impact of indirect transmission of the virus may improve our understanding of the overall dynamics of COVID-19. We developed a novel deterministic susceptible-exposed-infected-removed-virus-death compartmental model to study the impact of indirect transmission pathway on the spread of COVID-19, the sources of infection, and prevention/control. We fitted the model to the cumulative number of confirmed cases at episode date in Toronto, Canada using a Markov Chain Monte Carlo optimization algorithm. We studied the effect of indirect transmission on the epidemic peak, peak time, epidemic final size and the effective reproduction number, based on different initial conditions and at different stages. Our findings revealed an increase in cases with indirect transmission. Our work highlights the importance of implementing additional preventive and control measures involving cleaning of surfaces, fumigation, and disinfection to lower the spread of COVID-19, especially in public areas like the grocery stores, malls and so on. We conclude that indirect transmission of SARS-CoV-2 has a significant effect on the dynamics of COVID-19, and there is need to consider this transmission route for effective mitigation, prevention and control of COVID-19 epidemic.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3