Application of Optical Genome Mapping For Comprehensive Assessment of Chromosomal Structural Variants for Clinical Evaluation of Myelodysplastic Syndromes

Author:

Yang Hui,Garcia-Manero Guillermo,Rush Diana,Montalban-Bravo Guillermo,Mallampati Saradhi,Medeiros L. Jeffrey,Levy Brynn,Luthra Rajyalakshmi,Kanagal-Shamanna Rashmi

Abstract

ABSTRACTStructural chromosomal variants [copy number variants (CNVs): losses/ gains and structural variants (SVs): inversions, balanced and unbalanced fusions/translocations] are important for diagnosis and risk-stratification of myelodysplastic syndromes (MDS). Optical genome mapping (OGM) is a novel single-platform cytogenomic technique that enables high-throughput, accurate and genome-wide detection of all types of clinically important chromosomal variants (CNVs and SVs) at a high resolution, hence superior to current standard-of-care cytogenetic techniques that include conventional karyotyping, FISH and chromosomal microarrays. In this proof-of-principle study, we evaluated the performance of OGM in a series of 12 previously well-characterized MDS cases using clinical BM samples. OGM successfully facilitated detection and detailed characterization of twenty-six of the 28 clonal chromosomal variants (concordance rate: 93% with conventional karyotyping; 100% with chromosomal microarray). These included copy number gains/losses, inversions, inter and intra-chromosomal translocations, dicentric and complex derivative chromosomes; the degree of complexity in latter aberrations was not apparent using standard technologies. The 2 missed aberrations were from a single patient within a composite karyotype, below the limit of detection. Further, OGM uncovered 6 additional clinically relevant sub-microscopic aberrations in 4 (33%) patients that were cryptic by standard-of-care technologies, all of which were subsequently confirmed by alternate platforms. OGM permitted precise gene-level mapping of clinically informative genes such as TP53, TET2 and KMT2A, voiding the need for multiple confirmatory assays. OGM is a potent single-platform assay for high-throughput and accurate identification of clinically important chromosomal variants.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3