Abstract
AbstractProtein N-glycosylation is the most common posttranslational modifications found in all three domains of life. The crenarchaeal N-glycosylation begins with the synthesis of a lipid-linked chitobiose core structure, identical to that in eukaryotes. Here, we report the identification of a thermostable archaeal beta-1,4-N-acetylglucosaminyltransferase, named archaeal glycosylation enzyme 24 (Agl24), responsible for the synthesis of the N-glycan chitobiose core. Biochemical characterization confirmed the function as an inverting β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase. Substitution of a conserved histidine residue, found also in the eukaryotic and bacterial homologs, demonstrated its functional importance for Agl24. Furthermore, bioinformatics and structural modeling revealed strong similarities between Agl24 and both the eukaryotic Alg14/13 and a distant relation to the bacterial MurG, which catalyze the identical or a similar process, respectively. Our data, complemented by phylogenetic analysis of Alg13 and Alg14, revealed similar sequences in Asgardarchaeota, further supporting the hypothesis that the Alg13/14 homologs in eukaryotes have been acquired during eukaryogenesis.HighlightsFirst identification and characterization of a thermostable β-D-GlcNAc-(1→4)-α-D-GlcNAc-diphosphodolichol glycosyltransferase (GT family 28) in Archaea.A highly conserved histidine, within a GGH motif in Agl24, Alg14, and MurG, is essential for function of Agl24.Agl24-like homologs are broadly distributed among Archaea.The eukaryotic Alg13 and Alg14 are closely related to the Asgard homologs, suggesting their acquisition during eukaryogenesis.
Publisher
Cold Spring Harbor Laboratory
Reference93 articles.
1. Haloferax volcanii AglB and AglD are Involved in N-glycosylation of the S-layer Glycoprotein and Proper Assembly of the Surface Layer
2. Albers, S. , Eichler, J. & Aebi, M. 2017. Archaea. In: Varki, A. , Cummings, R. D. , Esko, J. D. , Stanley, P. , Hart, G. W. , Aebi, M. , Darvill, A. G. , Kinoshita, T. , Packer, N. H. , Prestegard, J. H. , Schnaar, R. L. & Seeberger, P. H. (eds.) Essentials of Glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press
3. The archaeal cell envelope
4. Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes
5. On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database