Generalizable EEG encoding models with naturalistic audiovisual stimuli

Author:

Desai MaansiORCID,Holder Jade,Villarreal Cassandra,Clark Nat,Hamilton Liberty S.ORCID

Abstract

AbstractIn natural conversations, listeners must attend to what others are saying while ignoring extraneous background sounds. Recent studies have used encoding models to predict electroencephalography (EEG) responses to speech in noise-free listening situations, sometimes referred to as “speech tracking” in EEG. Researchers have analyzed how speech tracking changes with different types of background noise. It is unclear, however, whether neural responses from noisy and naturalistic environments can be generalized to more controlled stimuli. If encoding models for noisy, naturalistic stimuli are generalizable to other tasks, this could aid in data collection from populations who may not tolerate listening to more controlled, less-engaging stimuli for long periods of time. We recorded non-invasive scalp EEG while participants listened to speech without noise and audiovisual speech stimuli containing overlapping speakers and background sounds. We fit multivariate temporal receptive field (mTRF) encoding models to predict EEG responses to pitch, the acoustic envelope, phonological features, and visual cues in both noise-free and noisy stimulus conditions. Our results suggested that neural responses to naturalistic stimuli were generalizable to more controlled data sets. EEG responses to speech in isolation were predicted accurately using phonological features alone, while responses to noisy speech were more accurate when including both phonological and acoustic features. These findings may inform basic science research on speech-in-noise processing. Ultimately, they may also provide insight into auditory processing in people who are hard of hearing, who use a combination of audio and visual cues to understand speech in the presence of noise.Significance StatementUnderstanding spoken language in natural environments requires listeners to parse acoustic and linguistic information in the presence of other distracting stimuli. However, most studies of auditory processing rely on highly controlled stimuli with no background noise, or with background noise inserted at specific times. Here, we compare models where EEG data are predicted based on a combination of acoustic, phonetic, and visual features in highly disparate stimuli – sentences from a speech corpus, and speech embedded within movie trailers. We show that modeling neural responses to highly noisy, audiovisual movies can uncover tuning for acoustic and phonetic information that generalizes to simpler stimuli typically used in sensory neuroscience experiments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3