Saccharomyces cerevisiae gene expression during fermentation of Pinot noir wines at industrially relevant scale

Author:

Reiter Taylor,Montpetit Rachel,Byer Shelby,Frias Isadora,Leon Esmeralda,Viano Robert,Mcloughlin Michael,Halligan Thomas,Hernandez Desmon,Runnebaum Ron,Montpetit BenORCID

Abstract

AbstractDuring a wine fermentation, Saccharomyces cerevisiae transforms grape must through metabolic activities that generate ethanol and other compounds. Thousands of genes change expression over the course of a wine fermentation to allow S. cerevisiae to adapt to and dominate the fermentation environment. Investigations into these gene expression patterns have previously revealed genes that underlie cellular adaptation to the grape must and wine environment involving metabolic specialization and ethanol tolerance. However, the vast majority of studies detailing gene expression patterns have occurred in controlled environments that do not recapitulate the biological and chemical complexity of fermentations performed at production scale. Here, we present an analysis of the S. cerevisiae RC212 gene expression program across 40 pilot-scale fermentations (150 liters) using Pinot noir grapes from 10 California vineyards across two vintages. We observe a core gene expression program across all fermentations irrespective of vintage similar to that of laboratory fermentations, in addition to novel gene expression patterns likely related to the presence of non-Saccharomyces microorganisms and oxygen availability during fermentation. These gene expression patterns, both common and diverse, provide insight into Saccharomyces cerevisiae biology critical to fermentation outcomes at industry-relevant scales.ImportanceThis study characterized Saccharomyces cerevisiae RC212 gene expression during Pinot noir fermentation at pilot scale (150 liters) using production-relevant conditions. The reported gene expression patterns of RC212 is generally similar to that observed in laboratory fermentation conditions, but also contains gene expression signatures related to yeast-environment interactions found in a production setting (e.g., presence of non-Saccharomyces microorganisms). Key genes and pathways highlighted by this work remain under-characterized, raising the need for further research to understand the roles of these genes and their impact on industrial wine fermentation outcomes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3