Estimation of cell cycle kinetics in higher plant root meristem links organ position with cellular fate and chromatin structure

Author:

Pasternak TarasORCID,Kircher StefanORCID,Palme Klaus

Abstract

AbstractPlant root development is a complex spatial-temporal process that originates in the root apical meristem (RAM). To shape the organ’s structure signaling between the different cells and cell files must be highly coordinated. Thereby, diverging kinetics of chromatin remodeling and cell growth in these files need to be integrated and balanced by differential cell growth and local differences in cell proliferation frequency. Understanding the local differences in cell cycle duration in the RAM and its correlation with chromatin organization is crucial to build a holistic view on the different regulatory processes and requires a quantitative estimation of the chromatin geometry and underlying mitotic cell cycle phases’ timing at every cell file and every position. Unfortunately, so far precise methods for such analysis are missing.This study presents a robust and straightforward pipeline to determine in parallel the duration of cell cycle’s key stages in all cell layers of a plant’s root and their nuclei organization. The methods combine marker-free techniques based on the detection of the nucleus, deep analysis of the chromatin phase transition, incorporation of 5-ethynyl-2′-deoxyuridine (EdU), and mitosis with a deep-resolution plant phenotyping platform to analyze all key cell cycle events’ kinetics.In the Arabidopsis thaliana L. RAM S-phase duration was found to be as short as 20-30 minutes in all cell files. The subsequent G2-phase duration however depends on the cell type/position and varies from 3.5 hours in the pericycle to more than 4.5 hours in the epidermis. Overall, S+G2+M duration in Arabidopsis under our condition is 4 hours in the pericycle and up to 5.5 hours in the epidermis.Endocycle duration was determined as the time required to achieve 100% EdU index in the transition zone and estimated to be in the range of 3-4 hours.Besides Arabidopsis, we show that the presented technique is applicable also to root tips of other dicot and monocot plants (tobacco (Nicotiana tabacum L.), tomato (Lycopersicon esculentum L.) and wheat (Triticum aestivum L.).

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3