D614G Substitution of SARS-CoV-2 Spike Protein Increases Syncytium Formation and Viral Transmission via Enhanced Furin-mediated Spike Cleavage

Author:

Cheng Ya-Wen,Chao Tai-Ling,Li Chiao-Ling,Wang Sheng-Han,Kao Han-Chieh,Tsai Ya-Min,Wang Hurng-Yi,Hsieh Chi-Ling,Chen Pei-Jer,Chang Sui-Yuan,Yeh Shiou-Hwei

Abstract

ABSTRACTSince the D614G substitution in the spike (S) of SARS-CoV-2 emerged, the variant strain underwent rapid expansion to become the most abundant strain worldwide. Therefore, this substitution may provide an advantage of viral spreading. To explore the mechanism, we analyzed 18 viral isolates containing S proteins with either G614 or D614. Both the virus titer and syncytial phenotype were significantly increased in S-G614 than in S-D614 isolates. We further showed increased cleavage of S at the furin substrate site, a key event that promotes syncytium, in S-G614 isolates. These functions of the D614G substitution were validated in cells expressing S protein. The effect on syncytium was abolished by furin inhibitor treatment and mutation of the furin-cleavage site, suggesting its dependence on cleavage by furin. Our study provides a mechanistic explanation for the increased transmissibility of S-G614 containing SARS-CoV-2 through enhanced furin-mediated S cleavage, which increases membrane fusion and virus infectivity.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3