Ancient sedimentary DNA shows rapid post-glacial colonisation of Iceland followed by relatively stable vegetation until Landnám

Author:

Alsos Inger GreveORCID,Lammers YouriORCID,Kjellman Sofia E.ORCID,Føreid Merkel Marie Kristine,Bender Emma M.,Rouillard AlexandraORCID,Erlendsson EgillORCID,Guðmundsdóttir Esther RuthORCID,Benediktsson Ívar ÖrnORCID,Farnsworth Wesley R.ORCID,Brynjólfsson SkaftiORCID,Gísladóttir GuðrúnORCID,Eddudóttir Sigrún DöggORCID,Schomacker AndersORCID

Abstract

AbstractUnderstanding patterns of colonisation is important for explaining both the distribution of single species and anticipating how ecosystems may respond to global warming. Insular flora may be especially vulnerable because oceans represent severe dispersal barriers. Here we analyse two lake sediment cores from Iceland for ancient sedimentary DNA to infer patterns of colonisation and Holocene vegetation development. Our cores from lakes Torfdalsvatn and Nykurvatn span the last c. 12,000 cal. yr BP and c. 8600 cal. yr BP, respectively. With near-centennial resolution, we identified a total of 191 plant taxa, with 152 taxa identified in the sedimentary record of Torfdalsvatn and 172 plant taxa in the sedimentary record of Nykurvatn. The terrestrial vegetation at Torfdalsvatn was first dominated by bryophytes, arctic herbs such as Saxifraga spp. and grasses. Around 10,100 cal. yr BP, a massive immigration of new taxa was observed, and shrubs and dwarf shrubs became common whereas aquatic macrophytes became dominant. At Nykurvatn, all dominant taxa occurred already in the earliest samples; shrubs and dwarf shrubs were more abundant at this site than at Torfdalsvatn. There was an overall steep increase both in the local and regional species pool until 8000 cal. yr BP, by which time ¾ of all taxa identified had arrived. In the period 4500-1000 cal. yr BP, a few new taxa of bryophytes, graminoids and forbs are identified. The last millennium, after human settlement of the island (Landnám), is characterised by a sudden disappearance of Juniperus communis, but also reappearance of some high arctic forbs and dwarf shrubs. Notable immigration during the Holocene coincides with periods of dense sea-ice cover, and we hypothesise that this may have acted as a dispersal vector. Thus, although ongoing climate change might provide a suitable habitat in Iceland for a large range of species only found in the neighbouring regions today, the reduction of sea ice may in fact limit the natural colonisation of new plant species.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3