Does the punishment fit the crime? Consequences and diagnosis of misspecified detection functions in Bayesian spatial capture-recapture modelling

Author:

Dey SoumenORCID,Bischof RichardORCID,Dupont Pierre P. A.,Milleret CyrilORCID

Abstract

AbstractSpatial capture-recapture (SCR) is now used widely to estimate wildlife densities. At the core of SCR models lies the detection function, linking individual detection probability to the distance from its latent activity center. The most common function (half-normal) assumes a bivariate normal space use and consequently detection pattern. This is likely an oversimplification and misrepresentation of real-life animal space use patterns, but studies have reported that density estimates are relatively robust to misspecified detection functions. However, information about consequences of such misspecification on space use parameters (e.g. home range area), as well as diagnostic tools to reveal it are lacking.We simulated SCR data under six different detection functions, including the half-normal, to represent a wide range of space use patterns. We then fit three different SCR models, with the three simplest detection functions (half-normal, exponential and half-normal plateau) to each simulated data set. We evaluated the consequences of misspecification in terms of bias, precision and coverage probability of density and home range area estimates. We also calculated Bayesian p-values with respect to different discrepancy metrics to assess whether these can help identify misspecifications of the detection function.We corroborate previous findings that density estimates are robust to misspecifications of the detection function. However, estimates of home range area are prone to bias when the detection function is misspecified. When fitted with the half-normal model, average relative bias of 95% kernel home range area estimates ranged between −25% and 26% depending on the misspecification. In contrast, the half-normal plateau model (an extension of the half-normal) returned average relative bias that ranged between −26% and −4%. Additionally, we found useful heuristic patterns in Bayesianp-values to diagnose the misspecification in detection function.Our analytical framework and diagnostic tools may help users select a detection function when analyzing empirical data, especially when space use parameters (such as home range area) are of interest. We urge development of additional custom goodness of fit diagnostics for Bayesian SCR models to help practitioners identify a wider range of model misspecifications.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3