Biodiversity Image Quality Metadata Augments Convolutional Neural Network Classification of Fish Species

Author:

Leipzig JeremyORCID,Bakis YasinORCID,Wang XiaojunORCID,Elhamod MohannadORCID,Diamond KellyORCID,Dahdul WasilaORCID,Karpatne AnujORCID,Maga MuratORCID,Mabee PaulaORCID,Bart Henry L.ORCID,Greenberg JaneORCID

Abstract

AbstractBiodiversity image repositories are crucial sources of training data for machine learning approaches to biological research. Metadata, specifically metadata about object quality, is putatively an important prerequisite to selecting sample subsets for these experiments. This study demonstrates the importance of image quality metadata to a species classification experiment involving a corpus of 1935 fish specimen images which were annotated with 22 metadata quality properties. A small subset of high quality images produced an F1 accuracy of 0.41 compared to 0.35 for a taxonomically matched subset of low quality images when used by a convolutional neural network approach to species identification. Using the full corpus of images revealed that image quality differed between correctly classified and misclassified images. We found the visibility of all anatomical features was the most important quality feature for classification accuracy. We suggest biodiversity image repositories consider adopting a minimal set of image quality metadata to support future machine learning projects.

Publisher

Cold Spring Harbor Laboratory

Reference24 articles.

1. Hui Han ; Giles, C. L. ; Manavoglu, E. ; Hongyuan Zha ; Zhenyue Zhang ; Fox, E. A. Automatic Document Metadata Extraction Using Support Vector Machines. In 2003 Joint Conference on Digital Libraries, 2003. Proceedings.; 2003; pp 37–48.

2. Schelter, S. ; Boese, J.-H. ; Kirschnick, J. ; Klein, T. ; Seufert, S. Automatically Tracking Metadata and Provenance of Machine Learning Experiments. In Machine Learning Systems workshop at NIPS; 2017.

3. Leipzig, J. ; Nüst, D. ; Hoyt, C. T. ; Soiland-Reyes, S. ; Ram, K. ; Greenberg, J. The Role of Metadata in Reproducible Computational Research. arXiv [cs.DL], 2020.

4. Improving Plankton Image Classification Using Context Metadata;Limnol. Oceanogr. Methods,2019

5. Tang, K. ; Paluri, M. ; Fei-Fei, L. ; Fergus, R. ; Bourdev, L. Improving Image Classification with Location Context. In Proceedings of the IEEE international conference on computer vision; 2015; pp 1008–1016.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3