Hydration-induced structural transitions in biomimetic tandem repeat proteins

Author:

Dubini Romeo C. A.ORCID,Jung HuihunORCID,Demirel Melik C.ORCID,Rovó PetraORCID

Abstract

AbstractA major challenge in developing biomimetic, high-performance, and sustainable products is the accurate replication of the biological materials’ striking properties, such as high strength, self-repair, and stimuli-responsiveness. The rationalization of such features on the microscopic scale, together with the rational design of synthetic materials, is currently hindered by our limited understanding of the sequence-structure-property relationship. Here, employing state-of-the-art nuclear magnetic resonance (NMR) spectroscopy, we link the atomistic structural and dynamic properties of an artificial bioinspired tandem repeat protein TR(1,11) to its stunning macroscopic properties including high elasticity, self-healing capabilities, and recordholding proton conductivity amongst biological materials. We show that the hydration-induced structural rearrangement of the amorphous Gly-rich soft segment and the ordered Ala-rich hard segment is the key to the material’s outstanding physical properties. We found that in the hydrated state both the Ala-rich ordered and Gly-rich disordered parts contribute to the formation of the nanoconfined β-sheets, thereby enhancing the strength and toughness of the material. This restructuring is accompanied by fast proline ring puckering and backbone cis-trans isomerization at the water-protein interface, which in turn enhances the elasticity and the thermal conductivity of the hydrated films. Our in-depth characterization provides a solid ground for the development of next-generation materials with improved properties.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Silk based biomaterials;Biomaterials,2003

2. Elastin-based materials

3. Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers;Adv. Mater,2020

4. Rational design of new materials using recombinant structural proteins: Current state and future challenges;J. Struct. Biol,2018

5. Squid-inspired tandem repeat proteins: Functional fibers and films;Front. Chem,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3