Toward Assessing Clinical Trial Publications for Reporting Transparency

Author:

Kilicoglu HalilORCID,Rosemblat Graciela,Hoang Linh,Wadhwa Sahil,Peng Zeshan,Malički MarioORCID,Schneider Jodi,Riet Gerben terORCID

Abstract

AbstractObjectiveTo annotate a corpus of randomized controlled trial (RCT) publications with the checklist items of CONSORT reporting guidelines and using the corpus to develop text mining methods for RCT appraisal.MethodsWe annotated a corpus of 50 RCT articles at the sentence level using 37 fine-grained CONSORT checklist items. A subset (31 articles) was double-annotated and adjudicated, while 19 were annotated by a single annotator and reconciled by another. We calculated inter-annotator agreement at the article and section level using MASI (Measuring Agreement on Set-Valued Items) and at the CONSORT item level using Krippendorff’s α. We experimented with two rule-based methods (phrase-based and section header-based) and two supervised learning approaches (support vector machine and BioBERT-based neural network classifiers), for recognizing 17 methodology-related items in the RCT Methods sections.ResultsWe created CONSORT-TM consisting of 10,709 sentences, 4,845 (45%) of which were annotated with 5,246 labels. A median of 28 CONSORT items (out of possible 37) were annotated per article. Agreement was moderate at the article and section levels (average MASI: 0.60 and 0.64, respectively). Agreement varied considerably among individual checklist items (Krippendorff’s α= 0.06-0.96). The model based on BioBERT performed best overall for recognizing methodology-related items (micro-precision: 0.82, micro-recall: 0.63, micro-F1: 0.71). Combining models using majority vote and label aggregation further improved precision and recall, respectively.ConclusionOur annotated corpus, CONSORT-TM, contains more fine-grained information than earlier RCT corpora. Low frequency of some CONSORT items made it difficult to train effective text mining models to recognize them. For the items commonly reported, CONSORT-TM can serve as a testbed for text mining methods that assess RCT transparency, rigor, and reliability, and support methods for peer review and authoring assistance. Minor modifications to the annotation scheme and a larger corpus could facilitate improved text mining models. CONSORT-TM is publicly available at https://github.com/kilicogluh/CONSORT-TM.Graphical abstractHighlightsWe constructed a corpus of RCT publications annotated with CONSORT checklist items.We developed text mining methods to identify methodology-related check-list items.A BioBERT-based model performs best in recognizing adequately reported items.A phrase-based method performs best in recognizing infrequently reported items.The corpus and the text mining methods can be used to address reporting transparency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3