A Unified Probabilistic Modeling Framework for Eukaryotic Transcription Based on Nascent RNA Sequencing Data

Author:

Siepel AdamORCID

Abstract

AbstractNascent RNA sequencing protocols, such as GRO-seq and PRO-seq, are now widely used in the study of eukaryotic transcription, and these experimental techniques have given rise to a variety of statistical and machine-learning methods for data analysis. These computational methods, however, are generally designed to address specialized signal-processing or prediction tasks, rather than directly describing the dynamics of RNA polymerases as they move along the DNA template. Here, I introduce a general probabilistic model that describes the kinetics of transcription initiation, elongation, pause release, and termination, as well as the generation of sequencing read counts. I show that this generative model enables estimation of separate rates of initiation, pause-release, and termination, up to a proportionality constant. Furthermore, if applied to time-course data in a nonequilibrium setting, the model can be used to estimate elongation rates. This model additionally leads naturally to likelihood ratio tests for differences between genes, conditions, or species in various rates of interest. A version of the model in which read counts are assumed to be Poisson-distributed leads to convenient, closed-form solutions for parameter estimates and likelihood ratio tests. I present extensions to Bayesian inference and to a generalized linear model that can be used to discover genomic features associated with rates of elongation. Finally, I address technicalities concerning estimation of library size, normalization and sequencing replicates. Altogether, this modeling framework enables a unified treatment of many common tasks in the analysis of nascent RNA sequencing data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3