Persistence of a pandemic in the presence of susceptibility and infectivity distributions in a population: Mathematical model

Author:

Mukherjee SaumyakORCID,Mondal SayantanORCID,Bagchi BimanORCID

Abstract

The birth and death of a pandemic can be region specific. Pandemic seems to make repeated appearance in some places which is often attributed to human neglect and seasonal change. However, difference could arise from different distributions of inherent susceptibility (σinh) and external infectivity (ιext) from one population to another. These are often ignored in the theoretical treatments of an infectious disease progression. While the former is determined by the immunity of an individual towards a disease, the latter depends on the duration of exposure to the infection. Here we model the spatio-temporal propagation of a pandemic using a generalized SIR (Susceptible-Infected-Removed) model by introducing the susceptibility and infectivity distributions to comprehend their combined effects. These aspects have remained inadequately addressed till date. We consider the coupling between σinh and ιext through a new critical infection parameter (γc). We find that the neglect of these distributions, as in the naive SIR model, results in an overestimation in the estimate of the herd immunity threshold. That is, the presence of the distributions could dramatically reduce the rate of spread. Additionally, we include the effects of long-range migration by seeding new infections in a region. We solve the resulting master equations by performing Kinetic Monte Carlo Cellular Automata (KMC-CA) simulations. Importantly, our simulations can reproduce the multiple infection peak scenario of a pandemic. The latent interactions between disease migration and the distributions of susceptibility and infectivity can render the progression a character vastly different from the naive SIR model. In particular, inclusion of these additional features renders the problem a character of a living percolating system where the disease cluster can survive by spatial migration.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3