Generalized Prediction of Hemodynamic Shock in Intensive Care Units

Author:

Nagori Aditya,Singh Pradeep,Firdos Sameena,Vats Vanshika,Gupta Arushi,Bandhey Harsh,Kalia Anushtha,Sharma Arjun,Ailavadi Prakriti,Awasthi Raghav,Bhadra Wrik,Kaul Ayushmaan,Lodha Rakesh,Sethi Tavpritesh

Abstract

AbstractEarly prediction of hemodynamic shock in the ICU can save lives. Several studies have leveraged a combination of vitals, lab investigations, and clinical data to construct early warning systems for shock. However, these have a limited potential of generalization to diverse settings due to reliance on non-real-time data. Monitoring data from vitals can provide an early real-time prediction of Hemodynamic shock which can precede the clinical diagnosis to guide early therapy decisions. Generalization across age and geographical context is an unaddressed challenge. In this retrospective observational study, we built real-time shock prediction models generalized across age groups (adult and pediatric), ICU-types, and geographies. We trained, validated, and tested a shock prediction model on the publicly available eICU dataset on 208 ICUs across the United States. Data from 156 hospitals passed the eligibility criteria for cohort building. These were split hospital-wise in a five-fold training-validation-test set. External validation of the model was done on a pediatric ICU in New Delhi and MIMIC-III database with more than 0.23 million and one million patient-hours vitals data, respectively. Our models identified 92% of all the shock events more than 8 hours in advance with AUROC of 86 %(SD= 1.4) and AUPRC of 93% (SD =1.2) on the eICU testing set. An AUROC of 87 % (SD =1.8), AUPRC 92 % (SD=1.6) were obtained in external validation on the MIMIC-III cohort. The New Delhi Pediatric SafeICU data achieved an AUROC of 87 % (SD =4) AUPRC 91% (SD=3), despite being completely different geography and age group. In this first, we demonstrate a generalizable model for predicting shock, and algorithms are publicly available as a pre-configured Docker environment at https://github.com/tavlab-iiitd/ShoQPred.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3