Abstract
AbstractRegeneration requires the production of large numbers of new cells, and thus cell division regulators, particularly ERK signaling, are critical in regulating this process. In the highly regenerative planarian flatworm, questions remain as to whether ERK signaling controls overall regeneration or plays a head-specific role. Here we show that ERK inhibition in the 3 days following amputation delays regeneration, but that all tissues except the head can overcome this inhibition, resulting in headless regenerates. This prevention of head regeneration happens to a different degree along the anterior-posterior axis, with very anterior wounds regenerating heads even under ERK inhibition. Remarkably, 4 to 18 weeks after injury, the headless animals induced by ERK inhibition remodel to regain single-headed morphology, in the absence of further injury, in a process driven by Wnt/β-catenin signaling. Interestingly, headless animals are likely to exhibit unstable axial polarity, and cutting or fissioning prior to remodeling can result in body-wide reversal of anterior-posterior polarity. Our data reveal new aspects of how ERK signaling regulates regeneration in planaria and show anatomical remodeling on very long timescales.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献