Forecasting virus outbreaks with social media data via neural ordinary differential equations

Author:

Núñez Matías,Barreiro Nadia L.,Barrio Rafael A.,Rackauckas Christopher

Abstract

In the midst of the covid-19 pandemic, social media data collected in real time has the potential of being an early indicator of a new epidemic wave. This possibility is explored here by using a neural ordinary differential equation (neural ODE) that is trained to predict virus outbreaks for a geographic region. It learns from multivariate time series of signals obtained from a novel set of massive online surveys about COVID-19 symptoms. Once trained, the neural ODE is able to capture the dynamics of the interlinked local signals and accurately predict the number of new infections up to two months in advance. Moreover, it can estimate the future effects of changes in the number of infected at a given time, which can be associated with the flow of people entering or leaving a given region or, for instance, with a local vaccination campaign. This work gives compelling preliminary evidence for the predictive power of widely distributed social media surveys for public health application

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. D. G. McNeil Jr. , “Covid-19: How much herd immunity is enough,” (2020).

2. R. A. Dandekar , S. G. Henderson , M. Jansen , S. Moka , Y. Nazarathy , C. Rackauckas , P. G. Taylor , and A. Vuorinen , medRxiv (2020).

3. E. Alvarez , D. Obando , S. Crespo , E. Garcia , N. Kreplak , and F. Marsico , medRxiv (2020), 10.1101/2020.10.09.20210351, publisher: Cold Spring Har-bor Laboratory Press.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Socio-economic pandemic modelling: case of Spain;Scientific Reports;2024-01-08

2. An Analysis of Methods for Forecasting Epidemic Disease Outbreaks using Information from Social Media;International Journal of Recent Technology and Engineering (IJRTE);2022-07-30

3. Comparison Between Two Systems for Forecasting Covid-19 Infected Cases;Computer Science Protecting Human Society Against Epidemics;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3