Sampling from Disentangled Representations of Single-Cell Data Using Generative Adversarial Networks

Author:

Yu HengshiORCID,Welch Joshua D.ORCID

Abstract

AbstractDeep generative models, including variational autoencoders (VAEs) and generative adversarial networks (GANs), have achieved remarkable successes in generating and manipulating highdimensional images. VAEs excel at learning disentangled image representations, while GANs excel at generating realistic images. Here, we systematically assess disentanglement and generation performance on single-cell gene expression data and find that these strengths and weaknesses of VAEs and GANs apply to single-cell gene expression data in a similar way. We also develop MichiGAN1, a novel neural network that combines the strengths of VAEs and GANs to sample from disentangled representations without sacrificing data generation quality. We learn disentangled representations of two large singlecell RNA-seq datasets [13, 68] and use MichiGAN to sample from these representations. MichiGAN allows us to manipulate semantically distinct aspects of cellular identity and predict single-cell gene expression response to drug treatment.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. Emergence of invariance and disentanglement in deep representations;The Journal of Machine Learning Research,2018

2. Wasserstein gan;arXiv preprint,2017

3. Aubry, M. , Maturana, D. , Efros, A.A. , Russell, B.C. , Sivic, J. : Seeing 3d chairs: exemplar part-based 2d-3d alignment using a large dataset of cad models. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3762–3769 (2014)

4. Tuning-free disentanglement via projection;arXiv preprint,2019

5. A note on the inception score;arXiv preprint,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3