Sensitivity enhancement and selection are shared mechanisms for spatial and feature-based attention

Author:

Birman DanielORCID,Gardner Justin L.

Abstract

AbstractHuman observers use cues to guide visual attention to the most behaviorally relevant parts of the visual world. Cues are often separated into two forms: those that rely on spatial location and those that use features, such as motion or color. These forms of cueing are known to rely on different populations of neurons. Despite these differences in neural implementation, attention may rely on shared computational principles, enhancing and selecting sensory representations in a similar manner for all types of cues. Here we examine whether evidence for shared computational mechanisms can be obtained from how attentional cues enhance performance in estimation tasks. In our tasks, observers were cued either by spatial location or feature to two of four dot patches. They then estimated the color or motion direction of one of the cued patches, or averaged them. In all cases we found that cueing improved performance. We decomposed the effects of the cues on behavior into model parameters that separated sensitivity enhancement from sensory selection and found that both were important to explain improved performance. We found that a model which shared parameters across forms of cueing was favored by our analysis, suggesting that observers have equal sensitivity and likelihood of making selection errors whether cued by location or feature. Our perceptual data support theories in which a shared computational mechanism is re-used by all forms of attention.Significance StatementCues about important features or locations in visual space are similar from the perspective of visual cortex, both allow relevant sensory representations to be enhanced while irrelevant ones can be ignored. Here we studied these attentional cues in an estimation task designed to separate different computational mechanisms of attention. Despite cueing observers in three different ways, to spatial locations, colors, or motion directions, we found that all cues led to similar perceptual improvements. Our results provide behavioral evidence supporting the idea that all forms of attention can be reconciled as a single repeated computational motif, re-implemented by the brain in different neural architectures for many different visual features.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3