Identification of developmentally important genes inSilene latifoliathrough chemical genetics and transcriptome profiling

Author:

Bačovský VáclavORCID,Čegan RadimORCID,Tihlaříková EvaORCID,Neděla VilémORCID,Hudzieczek VojtěchORCID,Smrža Lubomír,Beneš VladimírORCID,Hobza RomanORCID

Abstract

AbstractDioecious plants possess diverse sex determination systems and unique mechanisms of reproductive organ development; however, little is known about how sex-linked genes shape the expression of regulatory cascades that lead to developmental differences between sexes. InSilene latifolia, a dioecious plant with stable dimorphism in floral traits, early experiments suggested that female-regulator genes act on the factors that determine the boundaries of the flower whorls. To identify these regulators, we sequenced the transcriptome of male flowers with fully developed gynoecia induced by rapid demethylation in the parental generation. As the hermaphrodite flower trait is holandric (transmitted only from male to male, inherited on the Y chromosome), we screened for genes that are differentially expressed between male, female, and hermaphrodite flowers. Dozens of candidate genes that are upregulated in hermaphrodite flowers compared to male and female flowers were detected and found to have putative roles in floral organization, affecting the expression of floral MADS-box and other genes. Amongst these genes, eight candidates were found to promote gynoecium formation in female and hermaphrodite flowers, affecting organ size, whorl boundary, and the expression of mainly B class flower genes. To complement our transcriptome analysis, we closely examined the floral organs in their native state using a field emission environmental scanning electron microscope. Our results reveal the principal regulatory pathways involved in sex-specific flower development in the classical model of dioecy,S. latifolia.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dosage compensation evolution in plants: theories, controversies and mechanisms;Philosophical Transactions of the Royal Society B: Biological Sciences;2022-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3