Abstract
AbstractSuberin is a hydrophobic biopolymer that can be deposited at the periphery of cells, forming protective barriers against biotic and abiotic stress. In roots, suberin forms lamellae at the periphery of endodermal cells where it plays crucial roles in the control of water and mineral transport. Suberin formation is highly regulated by developmental and environmental cues. However, the mechanisms controlling its spatiotemporal regulation are poorly understood. Here, we show that endodermal suberin is regulated independently by developmental and exogenous signals to fine tune suberin deposition in roots. We found a set of four MYB transcription factors (MYB41, MYB53, MYB92 and MYB93), that are regulated by these two signals, and are sufficient to promote endodermal suberin. Mutation of these four transcription factors simultaneously through genome editing, lead to a dramatic reduction of suberin formation in response to both developmental and environmental signals. Most suberin mutants analyzed at physiological levels are also affected in another endodermal barrier made of lignin (Casparian strips), through a compensatory mechanism. Through the functional analysis of these four MYBs we generated plants allowing unbiased investigations of endodermal suberin function without accounting for confounding effects due to Casparian strip defects, and could unravel specific roles of suberin in nutrient homeostasis.
Publisher
Cold Spring Harbor Laboratory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献