DeepStrain: A Deep Learning Workflow for the Automated Characterization of Cardiac Mechanics

Author:

Morales Manuel A.,van den Boomen Maaike,Nguyen Christopher,Kalpathy-Cramer JayashreeORCID,Rosen Bruce R.,Stultz Collin M.,Izquierdo-Garcia David,Catana CiprianORCID

Abstract

AbstractMyocardial strain analysis from cinematic magnetic resonance imaging (cine-MRI) data could provide a more thorough characterization of cardiac mechanics than volumetric parameters such as left-ventricular ejection fraction, but sources of variation including segmentation and motion estimation have limited its wide clinical use. We designed and validated a deep learning (DL) workflow to generate both volumetric parameters and strain measures from cine-MRI data, including strain rate (SR) and regional strain polar maps, consisting of segmentation and motion estimation convolutional neural networks developed and trained using healthy and cardiovascular disease (CVD) subjects (n=150). DL-based volumetric parameters were correlated (>0.98) and without significant bias relative to parameters derived from manual segmentations in 50 healthy and CVD subjects. Compared to landmarks manually-tracked on tagging-MRI images from 15 healthy subjects, landmark deformation using DL-based motion estimates from paired cine-MRI data resulted in an end-point-error of 2.9 ± 1.5 mm. Measures of end-systolic global strain from these cine-MRI data showed no significant biases relative to a tagging-MRI reference method. On 4 healthy subjects, intraclass correlation coefficient for intra-scanner repeatability was excellent (>0.95) for strain, moderate to excellent for SR (0.690-0.963), and good to excellent (0.826-0.994) in most polar map segments. Absolute relative change was within ~5% for strain, within ~10% for SR, and <1% in half of polar map segments. In conclusion, we developed and evaluated a DL-based, end-to-end fully-automatic workflow for global and regional myocardial strain analysis to quantitatively characterize cardiac mechanics of healthy and CVD subjects based on ubiquitously acquired cine-MRI data.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3