Stochastic model for COVID-19 in slums: interaction between biology and public policies

Author:

Solari Hernan G.ORCID,Natiello Mario A.ORCID

Abstract

We present a mathematical model for the simulation of the development of an outbreak of COVID-19 in a slum area under different interventions. Instead of representing interventions as modulations of the parameters of a free running epidemic we introduce a model structure that accounts for the actions but does not assume the results. The disease is modelled in terms of the progression of viremia reported in scientific works. The emergence of symptoms in the model reflects the statistics of a nation-wide highly detailed database consisting of more than 62000 cases (about a half of the confirmed by RT-PCR tests) with recorded symptoms in Argentina. The stochastic model displays several of the characteristics of COVID-19 such as a high variability in the evolution of the outbreaks, including long periods in which they run undetected, spontaneous extinction followed by a late outbreak and unimodal as well as bimodal progressions of daily counts of cases (second waves without ad-hoc hypothesis). We show how the relation between undetected cases (including the 'asymptomatic' cases) and detected cases changes as a function of the public policies, the efficiency of the implementation and the timing with respect to the development of the outbreak. We show also that the relation between detected cases and total cases strongly depends on the implemented policies and that detected cases cannot be regarded as a measure of the outbreak, being the dependency between total cases and detected cases in general not monotonic as a function of the efficiency in the intervention method. According to the model, it is possible to control an outbreak with interventions based on the detection of symptoms only in the case when the presence of just one symptom prompts isolation and the detection efficiency reaches about 80% of the cases. Requesting two symptoms to trigger intervention can be enough to fail in the goals.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3