A multiscale model suggests that a moderately weak inhibition of SARS-CoV-2 replication by type I IFN could accelerate the clearance of the virus

Author:

Bouchnita Anass,Tokarev Alexey,Volpert Vitaly

Abstract

AbstractSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible RNA virus that emerged in China at the end of 2019 and caused a large global outbreak. The interaction between SARS-CoV-2 and the immune response is complex because it is regulated by various processes taking part at the intracellular, tissue, and host levels. To gain a better understanding of the pathogenesis and progression of COVID-19, we formulate a multiscale model that integrate the main mechanisms which regulate the immune response to SARS-CoV-2 across multiple scales. The model describes the effect of type I interferon on the replication of SARS-CoV-2 inside cells. At the tissue level, we simulate the interactions between infected cells and immune cells using a hybrid agent-based representation. At the same time, we model the dynamics of virus spread and adaptive immune response in the host organism. After model validation, we demonstrate that a moderately weak inhibition of virus replication by type I IFN could elicit a strong adaptive immune response which accelerates the clearance of the virus. Furthermore, numerical simulations suggest that the deficiency of lymphocytes and not dendritic cells could lead to unfavourable outcomes in the elderly population.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3