Abstract
AbstractThe increased recurrence ofCandida albicansinfections is associated with greater resistance to antifungal drugs. This involves the establishment of alternative therapeutic protocols such as the probiotic microorganisms whose antifungal potential has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding the mechanisms of action of probiotic microorganisms has become a strategic need for the development of new therapeutics for humans. In this study, we investigated the prophylactic anti-Candida albicansproperties ofLactobacillus rhamnosusLcr35®using thein vitroCaco-2 cells model and thein vivo Caenorhabditis elegansmodel. On Caco-2 cells, we showed that the strain Lcr35®significantly inhibited the growth of the pathogen (~2 log CFU.mL−1) and its adhesion (150 to 6,300 times less). Moreover, on the top of having a prolongevity activity in the nematode, Lcr35®protects the animal from the fungal infection even if the yeast is still detectable in its intestine. At the mechanistic level, we noticed the repression of genes of the p38 MAPK signaling pathway and genes involved in the antifungal response induced by Lcr35®suggesting that the pathogen no longer appears to be detected by the worm immune system. However, the DAF-16 / FOXO transcription factor, implicated in the longevity and antipathogenic response ofC. elegans, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulating its host via DAF-16, but also by suppressing the virulence of the pathogen.
Publisher
Cold Spring Harbor Laboratory
Reference74 articles.
1. Candida and its dual lifestyle as a commensal and a pathogen;Res Microbiol [Internet],2017
2. Candida albicans commensalism in the gastrointestinal tract;FEMS Yeast Res [Internet],2015
3. Candida albicanspathogenicity mechanisms
4. Control of Candida albicans morphology and pathogenicity by post-transcriptional mechanisms;Cell Mol Life Sci.,2017
5. From attachment to damage: Defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells;PLoS One [Internet],2011
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献