Observation of histone nuclear import in living cells: implications in the processing of newly synthesised H3.1 & H4

Author:

Smith Michael James,Bowman Andrew James

Abstract

Highlights-Small-molecule-gated tether-and-release system for rapid pulse-chase of nuclear proteins-Tracking nuclear import of histone H3.1 and H4 and their incorporation at sites of active replication-Tethered H3.1 and H4 are monomeric and do not associate with ASF1, NASP, RbAp46 or HAT1 in the cytosol-Importin-β proteins as cytosolic binders of monomeric histonesSummaryWe present here a cytosolic tether-and-release system to study the import and dynamics of newly synthesised nuclear proteins. Release is gated by rapamycin-induced recruitment and activation of a viral protease, with cleavage of a peptide linker releasing the tethered cargo. We use this system to investigate nucleo-cytoplasmic divisions in the histone H3.1 & H4 deposition pathway, revealing that, contrary to previous analyses, H3.1 and H4 are predominantly monomeric in the cytosol, and only associate with the core histone chaperoning machinery after translocation to the nucleus. Whilst we do not detect interaction with known H3-H4 chaperones in the cytosol we do detect interaction with a number of importin-β proteins, that may serve a dual import and chaperoning function, preventing aggregation of histones until they are handed-off to the core histone chaperoning machinery in the nucleus.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3