Single-molecule optical mapping enables accurate molecular diagnosis of facioscapulohumeral muscular dystrophy (FSHD)

Author:

Dai Yi,Li Pidong,Wang Zhiqiang,Liang Fan,Yang Fan,Fang Li,Huang Yu,Huang Shangzhi,Zhou Jiapeng,Wang Depeng,Cui Liying,Wang Kai

Abstract

ABSTRACTFacioscapulohumeral Muscular Dystrophy (FSHD) is a common adult muscular dystrophy in which the muscles of the face, shoulder blades and upper arms are among the most affected. FSHD is the only disease in which “junk” DNA is reactivated to cause disease, and the only known repeat array-related disease where fewer repeats cause disease. More than 95% of FSHD cases are associated with copy number loss of a 3.3kb tandem repeat (D4Z4 repeat) at the subtelomeric chromosomal region 4q35, of which the pathogenic allele contains less than 10 repeats and has a specific genomic configuration called 4qA. Currently, genetic diagnosis of FSHD requires pulsed-field gel electrophoresis followed by Southern blot, which is labor-intensive, semi-quantitative and requires long turnaround time. Here, we developed a novel approach for genetic diagnosis of FSHD, by leveraging Bionano Saphyr single-molecule optical mapping platform. Using a bioinformatics pipeline developed for this assay, we found that the method gives direct quantitative measurement of repeat numbers, can differentiate 4q35 and the highly paralogous 10q26 regions, can determine the 4qA/4qB allelic configuration, and can quantitate levels of post-zygotic mosaicism. We evaluated this approach on 5 patients (including two with post-zygotic mosaicism) and 2 patients (including one with post-zygotic mosaicism) from two separate cohorts, and had complete concordance with Southern blots, but with improved quantification of repeat numbers resolved between haplotypes. We concluded that single-molecule optical mapping is a viable approach for molecular diagnosis of FSHD and may be applied in clinical diagnostic settings once more validations are performed.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3