Improved Statistical Efficiency of Simultaneous Multi-Slice fMRI by Reconstruction with Spatially Adaptive Temporal Smoothing

Author:

Chiew MarkORCID,Miller Karla L.ORCID

Abstract

AbstractWe introduce an approach to reconstruction of simultaneous multi-slice (SMS)-fMRI data that improves statistical efficiency. The method incorporates regularization to adjust temporal smoothness in a spatially varying, encoding-dependent manner, reducing the g-factor noise amplification per temporal degree of freedom. This results in a net improvement in tSNR and GLM efficiency, where the efficiency gain can be derived analytically as a function of the encoding and reconstruction parameters. Residual slice leakage and aliasing is limited when fMRI signal energy is dominated by low frequencies. Analytical predictions, simulated and experimental results demonstrate a marked improvement in statistical efficiency in the temporally regularized reconstructions compared to conventional slice-GRAPPA reconstructions, particularly in central brain regions. Furthermore, experimental results confirm that residual slice leakage and aliasing errors are not noticeably increased compared to slice-GRAPPA reconstruction. This approach to temporally regularized image reconstruction in SMS-fMRI improves statistical power, and allows for explicit choice of reconstruction parameters by directly assessing their impact on noise variance per degree of freedom.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3