Machine Source Localization of Tursiops truncatus Whistle-like Sounds in a Reverberant Aquatic Environment

Author:

Woodward SFORCID,Reiss DORCID,Magnasco MO

Abstract

AbstractMost research into bottlenose dolphins’ (Tursiops truncatus’) capacity for communication has centered on tonal calls termed whistles, in particular individually distinctive contact calls referred to as signature whistles. While “non-signature” whistles exist, and may be important components of bottlenose dolphins’ communicative repertoire, they have not been studied extensively. This is in part due to the difficulty of attributing whistles to specific individuals, a challenge that has limited the study of not only non-signature whistles but the study of general acoustic exchanges among socializing dolphins. In this paper, we propose the first machine-learning-based approach to identifying the source locations of semi-stationary, tonal, whistle-like sounds in a highly reverberant space, specifically a half-cylindrical dolphin pool. We deliver estimated time-difference-of-arrivals (TDOA’s) and normalized cross-correlation values computed from pairs of hydrophone signals to a random forest model for high-feature-volume classification and feature selection, and subsequently deliver the selected features into linear discriminant analysis, linear and quadratic Support Vector Machine (SVM), and Gaussian process models. In our 14-source-location setup, we achieve perfect accuracy in localization by classification and high accuracy in localization by regression (median absolute deviation of 0.66 m, interquartile range of 0.34 m - 1.57 m), with fewer than 10,000 features. By building a parsimonious (minimum-feature) classification tree model for the same task, we show that a minimally sufficient feature set is consistent with the information valued by a strictly geometric, time-difference-of-arrival-based approach to sound source localization. Ultimately, our regression models yielded better accuracy than the established Steered-Response Power (SRP) method when all training data were used, and comparable accuracy along the pool surface when deprived of training data at testing sites; our methods additionally boast improved computation time and the potential for superior localization accuracy in all dimensions with more training data.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3