Spatial and temporal alterations in protein structure by EGF regulate cryptic cysteine oxidation

Author:

Behring Jessica B,van der Post Sjoerd,Mooradian Arshag D,Egan Matthew J,Zimmerman Maxwell I,Clements Jenna L.,Bowman Gregory R,Held Jason M

Abstract

AbstractStimulation of receptor tyrosine kinases (RTK) such as EGF locally increase reactive oxygen species (ROS) levels at the plasma membrane that oxidize cysteines in proteins to enhance downstream signaling. Spatial confinement of ROS is an important regulatory mechanism to redox signaling, but it remains unknown why stimulation of different receptor tyrosine kinases (RTKs) at the plasma membrane target distinct sets of downstream proteins. To uncover additional mechanisms specifying which cysteines are redox regulated by EGF stimulation, we performed time-resolved quantification of the oxidation of 4,200 cysteine sites subsequent to EGF stimulation in A431 cells. EGF induces three distinct spatiotemporal patterns of cysteine oxidation in functionally organized protein networks, consistent with the spatial confinement model. Unexpectedly, protein crystal structure analysis and molecular dynamic simulation indicate widespread redox regulation of cryptic cysteines that are only solvent exposed upon changes in protein conformation. Phosphorylation and increased flux of nucleotide substrates serve as two distinct modes by which EGF specifies which cryptic cysteines become solvent exposed and redox regulated. Since proteins structurally regulated by different RTKs or cellular perturbations are largely unique, solvent exposure and redox regulation of cryptic cysteines is an important mechanism contextually delineating redox signaling networks.Significance StatementCellular redox processes are interconnected, but are not in equilibrium. Thus, understanding the redox biology of cells requires a systems-level, rather than reductionist, approach. Factors specifying which cysteines are redox regulated by a stimulus remain poorly characterized but are critical to understanding the fundamental properties of redox signaling networks. Here, we show that EGF stimulation induces oxidation of specific cysteines in 3 distinct spatiotemporal patterns. Redox regulated proteins include many proteins in the EGF pathway as well as many cysteines with known functional importance. Many redox regulated cysteines are cryptic and solvent exposed by changes in protein structure that were induced by EGF treatment. The novel finding that cryptic cysteines are redox regulated has important implications for how redox signaling networks are specified and regulated to minimize crosstalk. In addition, this time-resolved dataset of the redox kinetics of 4,200 cysteine sites is an important resource for others and is an important technological achievement towards systems-level understanding of cellular redox biology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3