Cellular and network mechanisms may generate sparse coding of sequential object encounters in hippocampal-like circuits

Author:

Trinh Anh-Tuan,Clarke Stephen E.,Harvey-Girard Erik,Maler LeonardORCID

Abstract

AbstractIn mammals, the localization of distinct landmarks is performed by hippocampal neurons that sparsely encode an animal’s location relative to surrounding objects. Similarly, the dorsal lateral pallium (DL) is essential for spatial learning in teleost fish. The DL of weakly electric gymnotiform fish receives sensory inputs from the preglomerular nucleus (PG), which has been hypothesized to encode the temporal sequence of electrosensory or visual landmark/food encounters. Here, we show that DL neurons have a hyperpolarized resting membrane potential combined with a high and dynamic spike threshold that increases following each spike. Current-evoked spikes in DL cells are followed by a strong small-conductance calcium-activated potassium channel (SK) mediated after-hyperpolarizing potential (AHP). Together, these properties prevent high frequency and continuous spiking. The resulting sparseness of discharge and dynamic threshold suggest that DL neurons meet theoretical requirements for generating spatial memory engrams by decoding the landmark/food encounter sequences encoded by PG neurons.

Publisher

Cold Spring Harbor Laboratory

Reference94 articles.

1. QX-314 blocks the potassium but not the sodium-dependent component of the opiate response in locus coeruleus neurons

2. Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo

3. Neural Mechanisms of Self-Location

4. Vision and electroreception. Integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons;Journal of Comparative Physiology A-Sensory Neural & Behavioral Physiology,1982

5. Pyramidal-cell plasticity in weakly electric fish: a mechanism for attenuating responses to reafferent electrosensory inputs;Journal of Comparative Physiology A-Sensory Neural & Behavioral Physiology,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3