Quantitative interactions drive Botrytis cinerea disease outcome across the plant kingdom

Author:

Caseys CelineORCID,Shi Gongjun,Soltis NicoleORCID,Gwinner Raoni,Corwin JasonORCID,Atwell Susanna,Kliebenstein DanielORCID

Abstract

AbstractBotrytis cinerea is a polyphagous fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. While it is known that quantitative resistance in the host and quantitative virulence in the pathogen largely mediate this pathosystem, how this pathogen interacts with the extensive host diversity is unknown. Does this pathogen have quantitative virulence efficiency on all hosts or individual solutions for each host? To address this question, we generated an infectivity matrix of 98 strains of Botrytis cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix showed that the predominant sources of quantitative variation are between host species and among pathogen strains. Furthermore, the eight eudicot hosts interacted individually with Botrytis cinerea strains independently of the evolutionary relatedness between hosts. An additive quantitative model can explain the complexity of these interactions in which Botrytis host specificity and general virulence have distinct polygenic architectures.

Publisher

Cold Spring Harbor Laboratory

Reference77 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3