A structural model of the human serotonin transporter in an outward-occluded state

Author:

Hellsberg EvaORCID,Ecker Gerhard F.,Stary-Weinzinger AnnaORCID,Forrest Lucy R.ORCID

Abstract

AbstractThe human serotonin transporter hSERT facilitates the reuptake of its endogenous substrate serotonin from the synaptic cleft into presynaptic neurons after signaling. Reuptake regulates the availability of this neurotransmitter and therefore hSERT plays an important role in balancing human mood conditions. In 2016, the first 3D structures of this membrane transporter were reported in an inhibitor-bound, outward-open conformation. These structures revealed valuable information about interactions of hSERT with antidepressant drugs. Nevertheless, the question remains how serotonin facilitates the specific conformational changes that open and close pathways from the synapse and to the cytoplasm as required for transport. Here, we present a serotonin-bound homology model of hSERT in an outward-occluded state, a key intermediate in the physiological cycle, in which the interactions with the substrate are likely to be optimal. Our approach uses two template structures and includes careful refinement and comprehensive computational validation. According to microsecond-long molecular dynamics simulations, this model exhibits interactions between the gating residues in the extracellular pathway, and these interactions differ from those in an outward-open conformation of hSERT bound to serotonin. Moreover, we predict several features of this state by monitoring the intracellular gating residues, the extent of hydration, and, most importantly, protein-ligand interactions in the central binding site. The results illustrate common and distinct characteristics of these two transporter states and provide a starting point for future investigations of the transport mechanism in hSERT.

Publisher

Cold Spring Harbor Laboratory

Reference99 articles.

1. SLC6 Neurotransmitter Transporters: Structure, Function, and Regulation

2. The SLC6 transporters: perspectives on structure, functions, regulation, and models for transporter dysfunction

3. The Transporter Classification Database (TCDB): recent advances

4. World Health Organization: WHO. [accessed 5 May 2019]. Available: https://www.who.int/mental_health/management/depression/en/

5. Aktories K , Förstermann U , Hofmann FB , Starke K . Allgemeine und spezielle Pharmakologie und Toxikologie: Begründet von W. Forth, D . Henschler, W. Rummel . “Elsevier,Urban&FischerVerlag”; 2013.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Bright Side of Psychedelics: Latest Advances and Challenges in Neuropharmacology;International Journal of Molecular Sciences;2023-01-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3