Author:
Bhattacharya Aniket,Jha Vineet,Singhal Khushboo,Fatima Mahar,Singh Dayanidhi,Chaturvedi Gaura,Dholakia Dhwani,Kutum Rintu,Pandey Rajesh,Bakken Trygve E.,Seth Pankaj,Pillai Beena,Mukerji Mitali
Abstract
AbstractBackgroundPrimate-specific Alus contribute to transcriptional novelties in conserved gene regulatory networks. Alu RNAs are present at elevated levels in stress conditions and consequently leads to transcript isoform specific functional role modulating the physiological outcome. One of the possible mechanisms could be Alu nucleated mRNA-miRNA interplay.ResultUsing combination of bioinformatics and experiments, we report a transcript isoform of an orphan gene, CYP20A1 (CYP20A1_Alu-LT) through exaptation of 23 Alus in its 9kb 3’UTR. CYP20A1_Alu-LT, confirmed by 3’RACE, is an outlier in length and expressed in multiple cell lines. We demonstrate its presence in single nucleus RNA-seq of ∼16000 human cortical neurons (including rosehip neurons). Its expression is restricted to the higher primates. Most strikingly, miRanda predicts ∼4700 miRNA recognition elements (MREs; with threshold< −25kcal/mol) for ∼1000 miRNAs, which have majorly originated within the 3’UTR-Alus post exaptation. We hypothesized that differential expression of this transcript could modulate mRNA-miRNA networks and tested it in primary human neurons where CYP20A1_Alu-LT is downregulated during heat shock response and upregulated upon HIV1-Tat treatment. CYP20A1_Alu-LT could possibly function as a miRNA sponge as it exhibits features of a sponge RNA such as cytosolic localization and ≥10 MREs for 140 miRNAs. Small RNA-seq revealed expression of nine miRNAs that can potentially be sponged by CYP20A1_Alu-LT in neurons. Additionally, CYP20A1_Alu-LT expression was positively correlated (low in heat shock and high in Tat) with 380 differentially expressed genes that contain cognate MREs for these nine miRNAs. This set is enriched in genes involved in neuronal development and hemostasis pathways.ConclusionWe demonstrate a potential role for CYP20A1_Alu-LT as miRNA sponge through preferential presence of MREs within Alus in a transcript isoform specific manner. This highlights a novel component of Alu-miRNA mediated transcriptional modulation leading to physiological homeostasis.
Publisher
Cold Spring Harbor Laboratory