IDH1 and IDH2 mutants identified in cancer lose inhibition by isocitrate because of a change in their binding sites

Author:

Bascur Juan P.,Alegría-Arcos Melissa,Araya-Durán Ingrid,Juritz Ezequiel I.,González-Nilo Fernando D.,Almonacid Daniel E.

Abstract

AbstractIDH1 and IDH2 are human enzymes that convert isocitrate (ICT) into α-ketoglutarate (AKG). However, mutations in positions R132 of IDH1 and R140 and R172 of IDH2 cause these enzymes to convert AKG into 2-hydroxyglutarate (2HG). Concurrently, accumulation of 2HG in the cell is correlated with the development of cancer. This activity change is mainly due to the loss of the competitive inhibition by ICT of these enzymes, but the molecular mechanism behind this loss of inhibition is currently unknown. In this work we characterized the inhibition and loss of inhibition of IDH1 and IDH2 by means of the binding energies derived from molecular docking calculations. We characterized the substrate binding sites and how they differ among the mutant and wild type enzymes using a Jaccard similarity coefficient based on the residues involved in binding the substrates. We found that molecular docking effectively identifies the inhibition by ICT in the wild type and mutant enzymes that do not appear in tumors, and the loss of inhibition in the mutant enzymes that appear in tumors. Additionally, we found that the binding sites of the mutant enzymes are different among themselves. Finally, we found that the regulatory segment of IDH1 plays a prominent role in the change of binding sites between the mutant enzymes and the wild-type enzymes. Our findings show that the loss of inhibition is related to variations in the enzyme binding sites. Additionally, our findings show that a drug capable of targeting all IDH1 and IDH2 mutations in cancer is unlikely to be found due to significant differences among the binding sites of these paralogs. Moreover, the methodology developed here, which combines molecular docking calculations with binding site similarity estimation, can be useful for engineering enzymes, for instance, when aiming to modify the substrate affinity of an enzyme.

Publisher

Cold Spring Harbor Laboratory

Reference34 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3