Theta oscillations gate the transmission of reliable sequences in the medial entorhinal cortex

Author:

Neru Arun,Assisi Collins

Abstract

Reliable sequential activity of neurons in the entorhinal cortex is necessary to encode spatially guided behavior and memory. In a realistic computational model of a medial entorhinal cortex (MEC) microcircuit, with stellate cells coupled via a network of inhibitory interneurons, we show how intrinsic and network mechanisms interact with theta oscillations to generate reliable outputs. Sensory inputs activate interneurons near their most excitable phase during each theta cycle. As the inputs change, different groups of interneurons are recruited and postsynaptic stellate cells are released from inhibition causing a sequence of rebound spikes. Since the rebound time scale of stellate cells matches theta oscillations, its spikes get relegated to the least excitable phase of theta ensuring that the network encodes only the external drive and ignores recurrent excitation by rebound spikes. In the absence of theta, rebound spikes compete with external inputs and disrupt the sequence that follows. Our simulations concur with experimental data that show, subduing theta oscillations disrupts the spatial periodicity of grid cell receptive fields. Further, the same mechanism where theta modulates the gain of incoming inputs may be used to select between competing sources of input and create transient functionally connected networks.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Architecture of the entorhinal cortex: a review of entorhinal anatomy in rodents with some comparative notes;Frontiers in Systems Neuroscience,2017

2. Cappaert, N. L. M. , Van Strien, N. M. & Witter, M. P. Hippocampal Formation. 511–573 (Academic Press, San Diego, 2015).

3. Microstructure of a spatial map in the entorhinal cortex

4. Sargolini, F. et al. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 758–763 (2006).

5. Representation of geometric borders in the entorhinal cortex;Science,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3