Activation of the TRKB receptor mediates the panicolytic-like effect of NOS inhibitor aminoguanidine

Author:

Ribeiro DEORCID,Casarotto PC,Spiacci AORCID,Fernandes GGORCID,Pinheiro LCORCID,Tanus-Santos JEORCID,Zangrossi HORCID,Guimarães FSORCID,Joca SRLORCID,Biojone CORCID

Abstract

AbstractNitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated responses, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG. We observed that the repeated (7 days), but not acute (1day), systemic administration of the NOS inhibitor aminoguanidine (AMG; 15 mg/kg/day) increased the latency to escape from the open arm of the elevated T-maze (ETM) and inhibited the number of jumps in hypoxia-induced escape reaction in rats, suggesting a panicolytic-like effect. Repeated, but not acute, AMG administration (15mg/kg) also decreased nitrite levels and increased TRKB phosphorylation at residues Y706/7 in the dPAG. Notwithstanding the lack of AMG effect on total BDNF levels in that structure, the microinjection of the TRK antagonist K252a into the dPAG blocked the anti-escape effect of this drug in the ETM. Taken together our data suggest that the inhibition of NO production by AMG increased the levels of pTRKB, which is required for the panicolytic-like effect observed.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3