Control of brain state transitions with light

Author:

Barbero-Castillo Almudena,Riefolo FabioORCID,Matera CarloORCID,Caldas-Martínez Sara,Mateos-Aparicio Pedro,Weinert Julia F.,Claro EnriqueORCID,Sánchez-Vives Maria Victoria,Gorostiza PauORCID

Abstract

ABSTRACTBehavior is driven by specific neuronal activity and can be directly associated with characteristic brain states. The oscillatory activity of neurons contains information about the mental state of an individual, and the transition between physiological brain states is largely controlled by neuromodulators. Manipulating neural activity, brain rhythms or synchronization is of significant therapeutic interest in several neurological disorders and can be achieved by different means such as transcranial current and magnetic stimulation techniques, and by light through optogenetics, although the clinical translation of the latter is hampered by the need of gene therapy. Here, we directly modulate brain rhythms with light using a novel photoswitchable muscarinic agonist. Synchronous slow wave activity is transformed into a higher frequency pattern in the cerebral cortex both in slices in vitro and in anesthetized mice. These results open the way to the study of the neuromodulation and control of spatiotemporal patterns of activity and pharmacology of brain states, their transitions, and their links to cognition and behavior, in different organisms without requiring any genetic manipulation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3