NetTCR: sequence-based prediction of TCR binding to peptide-MHC complexes using convolutional neural networks

Author:

Jurtz Vanessa IsabellORCID,Jessen Leon EyrichORCID,Bentzen Amalie KaiORCID,Jespersen Martin Closter,Mahajan SwapnilORCID,Vita RandiORCID,Jensen Kamilla KjærgaardORCID,Marcatili PaoloORCID,Hadrup Sine RekerORCID,Peters BjoernORCID,Nielsen Morten

Abstract

Predicting epitopes recognized by cytotoxic T cells has been a long standing challenge within the field of immuno- and bioinformatics. While reliable predictions of peptide binding are available for most Major Histocompatibility Complex class I (MHCI) alleles, prediction models of T cell receptor (TCR) interactions with MHC class I-peptide complexes remain poor due to the limited amount of available training data. Recent next generation sequencing projects have however generated a considerable amount of data relating TCR sequences with their cognate HLA-peptide complex target. Here, we utilize such data to train a sequence-based predictor of the interaction between TCRs and peptides presented by the most common human MHCI allele, HLA-A*02:01. Our model is based on convolutional neural networks, which are especially designed to meet the challenges posed by the large length variations of TCRs. We show that such a sequence-based model allows for the identification of TCRs binding a given cognate peptide-MHC target out of a large pool of non-binding TCRs.

Publisher

Cold Spring Harbor Laboratory

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3