Galton-Watson Process and Bayesian Inference: A Turnkey Method for the Viability Study of Small Populations

Author:

Cloez B.,Daufresne T.,Kerioui M.,Fontez B.

Abstract

AbstractSharp prediction of extinction times is needed in biodiversity monitoring and conservation management.The Galton-Watson process is a classical stochastic model for describing population dynamics. Its evolution is like the matrix population model where offspring numbers are random. Extinction probability, extinction time, abundance are well known and given by explicit formulas. In contrast with the deterministic model, it can be applied to small populations.Parameters of this model can be estimated through the Bayesian inference framework. This enables to consider nonarbitrary scenarios.We show how coupling Bayesian inference with the Galton-Watson model provides several features: i) a flexible modelling approach with easily understandable parameters ii) compatibility with the classical matrix population model (Leslie type model) iii) A non-computational approach which then leads to more information with less computing iv) a non-arbitrary choice for scenarios, parameters… It can be seen to go one step further than the classical matrix population model for the viability problem.To illustrate these features, we provide analysis details for two examples whose one of which is a real life example.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. Martingale central limit theorems and asymptotic estimation theory for multitype branching processes;Advances in Applied Probability,1978

2. K. B. Athreya , P. E. Ney , and P. Ney . Branching processes. Courier Corporation, 2004.

3. A. Barbour , L. Holst , and S. Janson . Poisson Approximation. Oxford science publications. Clarendon Press, 1992.

4. Population waves;J. Burma Res. Soc.,1941

5. De la loi de multiplication et de la durée des familles;Soc. Philomat. Paris Extraits, Sér,1845

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3