Musculoskeletal fat imaging and quantification by high-resolution metabolite cycling magnetic resonance spectroscopic imaging at 3 T: A fast method to generate separate distribution maps of lipid components

Author:

Alhulail Ahmad A.,Patterson Debra A.,Xia Pingyu,Zhou Xiaopeng,Lin Chen,Thomas M. Albert,Dydak Ulrike,Emir Uzay E.ORCID

Abstract

AbstractPurposeTo provide a rapid, non-invasive fat quantification technique capable of producing separate lipid component maps.MethodsThe calf muscles in 5 healthy adolescents (age 12-16 years; BMI = 20 ± 3 Kg/m2) were scanned by two different fat fraction (FF) quantification methods. A high-resolution, density-weighted concentric ring trajectory (DW-CRT) metabolite cycling (MC) magnetic resonance spectroscopic imaging (MRSI) technique was implemented to collect data with 0.25 mL resolution within 3 minutes and 16 seconds. For comparative purposes, the standard Dixon technique was performed. The two techniques were compared using structural similarity (SSIM) analysis. Additionally, the difference in the distribution of each lipid over the adolescent calf muscles was assessed based on the MRSI data.ResultsThe proposed MRSI technique provided individual FF maps for eight musculoskeletal lipids identified by LCModel analysis (L09, L11, L13, L15, L21, L23, L53, and L55) with mean SSIM indices of 0.19, 0.04, 0.03, 0.50, 0.45, 0.04, 0.07, and 0.12, respectively compared to that of Dixon’s FF map. Further analysis of voxels with zero SSIM demonstrated an increased sensitivity of FF lipid maps from data acquired using this MRSI technique over the standard Dixon technique. The trend of lipid spatial distribution over calf muscles was consistent with previously published findings in adults.ConclusionThe advantages of this MRSI technique make it a useful tool when individual lipid FF maps are desired within a short scanning time.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3