Spatial Mark-Resight for Categorically Marked Populations with an Application to Genetic Capture-Recapture

Author:

Augustine Ben C.,Stewart Frances E. C.,Royle J. Andrew,Fisher Jason T.,Kelly Marcella J.

Abstract

AbstractThe estimation of animal population density is a fundamental goal in wildlife ecology and management, commonly met using mark recapture or spatial mark recapture (SCR) study designs and statistical methods. Mark-recapture methods require the identification of individuals; however, for many species and sampling methods, particularly noninvasive methods, no individuals or only a subset of individuals are individually identifiable. The unmarked SCR model, theoretically, can estimate the density of unmarked populations; however, it produces biased and imprecise density estimates in many sampling scenarios typically encountered. Spatial mark-resight (SMR) models extend the unmarked SCR model in three ways: 1) by introducing a subset of individuals that are marked and individually identifiable, 2) introducing the possibility of individual-linked telemetry data, and 3) introducing the possibility that the capture-recapture data from the survey used to deploy the marks can be used in a joint model, all improving the reliability of density estimates. The categorical spatial partial identity model (SPIM) improves the reliability of density estimates over unmarked SCR along another dimension, by adding categorical identity covariates that improve the probabilistic association of the latent identity samples. Here, we combine these two models into a “categorical SMR” model to exploit the benefits of both models simultaneously. We demonstrate using simulations that SMR alone can produce biased and imprecise density estimates with sparse data and/or when few individuals are marked. Then, using a fisher (Pekania pennanti) genetic capture-recapture data set, we show how categorical identity covariates, marked individuals, telemetry data, and jointly modeling the capture survey used to deploy marks with the resighting survey all combine to improve inference over the unmarked SCR model. As previously seen in an application of the categorical SPIM to a real-world data set, the fisher data set demonstrates that individual heterogeneity in detection function parameters, especially the spatial scale parameter σ, introduces positive bias into latent identity SCR models (e.g., unmarked SCR, SMR), but the categorical SMR model provides more tools to reduce this positive bias than SMR or the categorical SPIM alone. We introduce the possibility of detection functions that vary by identity category level, which will remove individual heterogeneity in detection function parameters than is explained by categorical covariates, such as individual sex. Finally, we provide efficient SMR algorithms that accommodate all SMR sample types, interspersed marking and sighting periods, and any number of identity covariates using the 2-dimensional individual by trap data in conjunction with precomputed constraint matrices, rather than the 3-dimensional individual by trap by occasion data used in SMR algorithms to date.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3