Oct1 recruits the histone lysine demethylase Utx to canalize lineage specification

Author:

Perovanovic Jelena,Wu Yifan,Shen Zuolian,Hughes Erik,Chandrasekharan Mahesh B.ORCID,Tantin DeanORCID

Abstract

AbstractThe pathways used by cells to transition between undifferentiated, pluripotent state and tissue-specific states are incompletely understood. Here we show that the widely-expressed transcription factor Oct1/Pou2f1 activates silent, developmental lineage-appropriate genes to “canalize” developmental progression. Using Oct1 inducible knockout embryonic stem cells, we show that that Oct1 deficiency impairs mesodermal and terminal muscle differentiation in a manner that can be rescued by Oct1 retroviral expression. Using bulk RNA-seq, we show that mesoderm-specific genes are not correctly induced early in the differentiation timecourse. Single-cell gene expression profiling reveals that Oct1-deficient cells lose coherence in temporal induction of lineage programs, and show inappropriate developmental lineage branching resulting in poorly differentiated cells state with epithelial characteristics and hallmarks of oxidative stress. In embryonic stem cells, Oct1 co-binds with Oct4 to genes critical for mesoderm induction. The Utx/Kdm6a histone lysine demethylase also binds to many of these genes, and using a prototypic Pax3 gene we show that Oct1 recruits Utx to remove inhibitory H3K27me3 marks and activate expression. The specificity of the ubiquitous Oct1 protein for mesodermal genes can be explained by cooperative interactions with lineage-driving Smad transcription factors, as we show that Smad and Oct binding sites frequently coexist mesoderm-specific genes, that Oct1 and Smad3 interact, and that the sites and factors act cooperatively at the Myog enhancer. Overall, these results identify Oct1 as a key mediator of the induction of mesoderm lineage-specific genes.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3